

CoPerformance: A rapid prototyping
platform for developing interactive
artist-audience performances with
mobile devices

Abstract
How can mobile technology create more ways for
audiences to participate in live stage performances?
CoPerformance is a research project that aims to
design and develop a set of participatory performance
modules that allow for this kind of engagement. These
modules will be stand-alone, plug-and-play boilerplate
templates and scripts that will allow designers to
quickly build and test interactive experiences that
utilize mobile devices. CoPerformance can be deployed
via mobile browsers or native applications. The goal of
this platform is to use existing code—without further
abstracting what is already useful—and offer designers
and artists a powerful set of tools for interactive
performances; and decrease the barrier for entry into
this domain.

Author Keywords
Interaction design; platforms; real-time mobile;
Node.js; Socket.IO; AngularJS; rapid prototyping;
performance

Copyright is held by the author/owner(s).

MobileHCI 2013, Aug 27 – 30, 2013, Munich, Germany.
ACM XXX-X-XXXX-XXXX-X/XX/XX.

Bohdan Anderson, Technical
Director
ALSO Collective
408-196 Spadina Ave.
Toronto, ON M5T2C2 CA
bohdan@alsocollective.com

Symon Oliver, Creative
Director
ALSO Collective
408-196 Spadina Ave.
Toronto, ON M5T2C2 CA
symon@alsocollective.com

Patricio Davila, Principal
Investigator
OCAD University
100 McCaul St.
Toronto, ON M5T1W1 CA
pdavila@faculty.ocad.ca

ACM Classification Keywords
D.2.2 Design Tools and Techniques; D.2.10 Design, J.5
Arts and Humanities; K.8.m Miscellaneous

Introduction
Enhancing live music performances has been an
ongoing concern for music producers and with the
advent of mobile devices the opportunities for
participation at live events have increased
substantially. Many audiences have become
accustomed to recording performances, sending
messages during performances or using the built-in
light on mobile phones to create spontaneous crowd
light shows. Over the past decade HCI researchers
have endeavoured to understand how this interaction
might work and how it may be enhanced through the
use of sensors, wireless networks and mobile
computers [4, 5, 6, 7, 8].

Until recently building, distributed mobile interactive
performances have presented both a design and
technical challenge. Additionally, the frameworks in
place to facilitate such works required significant
knowledge and skills in server-side languages, and
mobile application development. In the past four years,
the architecture of the web has changed considerably
with the introduction of Google’s V8 Engine, HTML5,
CSS3, and decreased hosting costs. These changes
have lowered the barrier to entry for designing and
building rich web applications. As web technologies
progress, new platforms and frameworks offer
increased utility and distributed connectivity. We are
using these new platforms and frameworks in order to
develop a series of boilerplate modules that will
facilitate the design and build of distributed mobile
interactive performances without the need for the deep

programming skills often required. In the following text
we will cover the design rationale and philosophy of our
platform, the technical documentation and feasibility,
and our work in progress working with the musical
group The Battle of Santiago.

Server-side JavaScript and AngularJS
Built from Google’s V8 Engine, Node.js represents a
substantial contribution and shift in server-side
development allowing for the development of server-
side JavaScript applications. Most importantly, Node.js
is scalable, event-driven, lightweight, and efficient for
real-time network applications across distributed
devices [1]. Socket.IO—a Node Package—allows for
real-time bidirectional communication between agents
(client/server) [3]. The next important advance was the
development of AngularJS, a MVW (Model View
Whatever), which in short is a framework optimized for
dynamic HTML that interacts between client browser
and server fluidly [2]. We utilize these three recent
frameworks and packages in order to create our Core
Module, and a set of boilerplate UI/UX templates. We
developed CoPerformance with a philosophy of non-
abstraction.

Philosophy of Non-abstraction
The ultimate goal of this project is to further
democratize the tools for designing and building
engaging interactive performance projects. Although we
intend to provide a plug-and-play style architecture, we
believe that it is necessary to consider three essential
qualities of this platform: ease of use, intuitive and
educational, readable and familiar.

We avoid the addition of new semantic layers, and
ensure that the code remains written in a syntax that is

readable as conventional JavaScript. By undertaking an
abstraction free development process this platform
allows users—new or advanced—to use familiar tools
already in use within Node.js, Socket.IO, or AngularJS.
This ensures that all techniques that are learned are
transferrable to future projects beyond CoPerformance.
This approach ensures that CoPerformance remains
open and community driven, while avoiding the
proliferation of proprietary knowledge and mediums.

Technical Documentation and Feasibility
Within this section we will outline the following Core
Module currently being developed. Through the use of
Node.js we have built a standalone core application
that is device and operating system agnostic. We have
chosen four key low-level communication standards for
inputs and outputs: Socket.IO (TCP), UDP (which can
extend to other UDP based libraries), MIDI
(communication to and from musical instruments and
mixers), Serial (for sensor inputs and physical outputs
such as lighting systems and microcontrollers). Due to
the low-level communication standards that are
implemented into this platform input/output can be
easily received or transmitted from a wide range of
languages and applications. In our prototype we are
using TouchDesigner from Derivative to visualize user
input or augment video based off user input and input
from musicians. However, the Core Module is capable
of sending data to other frameworks or languages such
as Processing, MaxMSP, Pure Data, Ableton, and any
other framework that we write a module for. These
sub-modules extend the input/output from our Core
Module to other applications, enabling them to emit and
receive data within the CoPerformance platform.

Figure 1: Illustrating the use of our Node.js core
application and the hot swappable inputs and outputs
to and from Socket.IO (TCP), UDP, MIDI, and Serial.

Depending on the intentions of the user, the platform
can be easily deployed as a traditional Web Application,
or as a Phone Gap App that allows for access to native
features of mobile devices. The distinction is
represented in Table 1.

CoPerformance: Core Module
The Core Module is a Node.js server utilizing the
Socket.IO package, enabling upwards of 250,000
concurrent bidirectional connections. The main role of
the Core Module is to send/receive data from input
modules and rebroadcasted to all connected
input/output modules.

CoPerformance: Sub-modules
Sub-modules can be thought of as input or output
modules acting as satellites to the Core Module.
Without the feed from the Core Module, these satellites
would only perform predetermined routines and send
user specified data. Modules cast for output, receive
data from the Core Module, triggering changes in
visuals, lighting, or audio. Modules for input rely heavily
on the data they receive from the Core Module. These

Web
Application

Native
Application

Gyroscope Gyroscope

Accelerometer Accelerometer

Speaker Speaker

Touch Touch

Unreliable Camera

Unreliable Compass

n/a Flash / Light

n/a
Vibrotactile
Feedback

n/a Notifications

Unreliable Microphone

Table 1. Shows the availability of input
and output features based of the
deployment method.

modules send and receive data to the Core Module,
which in turn transmits these inputs to any connected
output modules.

CoPerformance: Design and UI/UX Modules
CoPerformance will introduce a set of key UI/UX
templates designed and built in AngularJS. These
modules will be composed of interface elements,
animations, and designs written to consider modern,
and best practices of web development. Users are able
to customize down to the finest details, or build their
own custom interface without the use of these
templates. The templates ensure that users are able to
get prototypes up and going without the need to write a
frontend from scratch.

Current Prototype
At present, our prototype is using Socket.IO and MIDI
deployed as a Native Application via Phone Gap, in
conjunction with TouchDesigner to deliver an
interactive performance. Users are cued via
notifications on their mobile devices to use their phones
as a form of embodied input, whereby tapping,
clapping, shaking, and gyrating become inputs into
large-scale visualizations and lighting cues that occur
with the musical performance.

Future Work
We would like this work to continue and become widely
available to artists working with a variety of scales in
audience and participation. To this end we intend on
releasing our work as open source using public
repositories for code as well as case studies or
descriptions of best practices.

References
[1] Node.js. (n.d.). Retrieved June 6, 2014, from
http://nodejs.org/

[2] AngularJS — Superheroic JavaScript MVW
Framework. (n.d.). Retrieved June 6, 2014, from
https://angularjs.org/

[3] Socket.IO. (n.d.). Retrieved June 6, 2014, from
http://Socket.IO/

[4] Barkhuus, L., & Jørgensen, T. (2008). Engaging the
crowd: Studies of audience-performer interaction. In
CHI ’08 Extended Abstracts on Human Factors in
Computing Systems (pp. 2925–2930). New York, NY,
USA: ACM.

[5] Bongers, B. (2000). Physical interfaces in the
electronic arts: Interaction theory and interfacing
techniques for real-time performance. In Trends in
Gestural Control of Music (pp. 41–70).

[6] Brown, B., O’Hara, K., Kindberg, T., & Williams, A.
(2009). Crowd computer interaction. In CHI’09
Extended Abstracts on Human Factors in Computing
Systems (pp. 4755–4758). New York, NY, USA: ACM.

[7] Freeman, J. (2005). Large audience participation,
technology, and orchestral performance. In Proceedings
of the 2005 International Computer Music Conference
(pp. 757–760).

[8] Ulyate, R., & Bianciardi, D. (2001). The interactive
dance club: Avoiding chaos in a multi participant
environment. In Proceedings of the 2001 Conference on
New Inter- faces for Musical Expression (pp. 1–3).
Singapore, Singapore: National University of Singapore.

